1. Colorado Ultraviolet Transit Experiment data simulator.
    Sreejith, A. G.; et al. (2019); JATIS.

  2. A glance into the end of a planetary system.
    Fossati, L.; (2019); Science.

  3. Toward More Reliable Analytic Thermochemical-equilibrium Abundances.
    Cubillos, P.; et al. (2019); ApJ.

  4. High precision ground-based photometry with 1-m class telescopes.
    Lendl, M.; et al. (2019); CoSka.

  5. WASP-147b, 160Bb, 164b, and 165b: two hot Saturns and two Jupiters, including two planets with metal-rich hosts.
    Lendl, M.; et al. (2019); MNRAS.

  6. NLTE Stellar Population Synthesis of Globular Clusters Using Synthetic Integrated Light Spectra. II. Expanded Photometry and Sensitivity of Near-IR Spectral Features to Cluster Age and Metallicity.
    Young, M.; et al. (2019); ApJ.

  7. Modeling atmospheric escape and MgII near-ultraviolet absorption of the highly irradiated hot Jupiter WASP-12b.
    Dwivedi, N.; et al. (2019); MNRAS.

  8. Prospect for UV observations from the Moon. III. Assembly and ground calibration of Lunar Ultraviolet Cosmic Imager (LUCI).
    Mathew, J.; et al. (2019); Ap&SS.

  9. The EBLM Project. V. Physical properties of ten fully convective, very-low-mass stars.
    von Boetticher, A.; et al. (2019); A&A.

  10. The Transiting Multi-planet System HD15337: Two Nearly Equal-mass Planets Straddling the Radius Gap.
    Gandolfi, D.; et al. (2019); ApJL.

  11. The Influence of Superflares of Host Stars on the Dynamics of the Envelopes of Hot Jupiters.
    Cherenkov, A. A.; et al. (2019); Astronomy Reports.

  12. TESS Delivers Its First Earth-sized Planet and a Warm Sub-Neptune.
    Dragomir, D.; et al. (2019); AJ.

  13. Swift UVOT near-UV transit observations of WASP-121 b.
    Salz, M.; et al. (2019); A&A.

  14. Physical properties and transmission spectrum of the WASP-74 planetary system from multiband photometry.
    Mancini, L.; et al. (2019); MNRAS.

  15. HD 219666 b: a hot-Neptune from TESS Sector 1.
    Esposito, M.; et al. (2019); A&A.

  16. Discovery of Three New Transiting Hot Jupiters: WASP-161 b, WASP-163 b, and WASP-170 b.
    Barkaoui, K.; et al. (2019); AJ.

  17. New transiting hot Jupiters discovered by WASP-South, Euler/CORALIE, and TRAPPIST-South.
    Hellier, C.; et al. (2019); MNRAS.

  18. Ephemeris refinement of 21 hot Jupiter exoplanets with high timing uncertainties.
    Mallonn, M.; et al. (2019); A&A.

  19. Hot Exoplanet Atmospheres Resolved with Transit Spectroscopy (HEARTS). II. A broadened sodium feature on the ultra-hot giant WASP-76b.
    Seidel, J. V.; et al. (2019); A&A.

  20. WASP-190b: Tomographic Discovery of a Transiting Hot Jupiter.
    Temple, L. Y.; et al. (2019); AJ.

  21. Three hot-Jupiters on the upper edge of the mass-radius distribution: WASP-177, WASP-181, and WASP-183.
    Turner, O. D.; et al. (2019); MNRAS.

  22. 2018:
  23. XUV Radiation from A-stars: Implications for Ultra-hot Jupiters.
    Fossati, L.; et al. (2018); ApJL.

  24. Grid of upper atmosphere models for 1-40 ME planets: application to CoRoT-7 b and HD 219134 b,c.
    Kubyshkina, D.; et al. (2018); A&A.

  25. Overcoming the Limitations of the Energy-limited Approximation for Planet Atmospheric Escape.
    Kubyshkina, D.; et al. (2018); ApJL.

  26. Young planets under extreme UV irradiation. I. Upper atmosphere modelling of the young exoplanet K2-33b.
    Kubyshkina, D.; et al. (2018); A&A.

  27. Suppressed Far-UV Stellar Activity and Low Planetary Mass Loss in the WASP-18 System.
    Fossati, L.; et al. (2018); AJ.

  28. PyTranSpot - A tool for multiband light curve modeling of planetary transits and stellar spots.
    Juvan, I.; et al. (2018); A&A.

  29. Design and modeling of a tunable spatial heterodyne spectrometer for emission line studies.
    Nirmal, K.; et al. (2018); JATIS.

  30. Wide-field Ultraviolet Imager for Astronomical Transient Studies.
    Mathew, J.; et al. (2018), Experimental Astronomy.

  31. WASP-128b: a transiting brown dwarf in the dynamical-tide regime.
    Hodzic, V.; et al. (2018); MNRAS.

  32. Discovery of WASP-174b: Doppler tomography of a near-grazing transit.
    Temple, L.; et al. (2018); MNRAS.

  33. WASP-190b: Tomographic discovery of a transiting hot Jupiter.
    Temple, L.; et al. (2018); AJ.

  34. WASP-166b: a bloated super-Neptune transiting a V = 9 star.
    Hellier, C.; et al. (2018); MNRAS.

  35. The TROY project. II. Multi-technique constraints on exotrojans in nine planetary systems.
    Lillo-Box, J.; et al. (2018); A&A.

  36. A low-density hot Jupiter in a near-aligned, 4.5-day orbit around a V = 10.8, F5V star.
    Anderson, D.; et al. (2018); AJ.

  37. The Peculiar Atmospheric Chemistry of KELT-9b.
    Kitzmann, D.; et al. (2018); ApJ.

  38. Discovery of three new transiting hot Jupiters: WASP-161 b, WASP-163 b and WASP-170 b.
    Barkaoui, K.; et al. (2018); ApJ.

  39. Distinguishing the albedo of exoplanets from stellar activity.
    Serrano, L.; et al. (2018); A&A.

  40. The discovery of WASP-151b, WASP-153b, WASP-156b: Insights on giant planet migration and the upper boundary of the Neptunian desert.
    Demangeon, O.; et al. (2018); A&A.

  41. The Transiting Exoplanet Community Early Release Science Program for JWST.
    Bean, J.; et al. (2018); PASP.

  42. The atmosphere of WASP-17b: Optical high-resolution transmission spectroscopy.
    Khalafinejad, S.; et al. (2018); A&A.

  43. Community Targets of JWST’s Early Release Science Program: Evaluation of WASP-63b.
    Kilpatrick, B.; et al. (2018); ApJ.

  44. Characterization of the HD 219134 multi-planet system II. Stellar-wind sputtered exospheres in rocky planets b & c.
    Vidotto, A.; et al. (2018); MNRAS.

  45. Characterization of the HD 219134 multiplanet system I. Observations of stellar magnetism, wind, and high-energy flux.
    Folsom, C.; et al. (2018); MNRAS.

  46. Supermassive hot Jupiters provide more favourable conditions for the generation of radio emission via the cyclotron maser instability - a case study based on Tau Bootis b.
    Weber, C.; et al. (2018); MNRAS.

  47. Atmospheric mass loss from hot Jupiters irradiated by stellar superflares.
    Bisikalo, D.; et al. (2018); ApJ.

  48. Far-ultraviolet Activity Levels of F, G, K, and M Dwarf Exoplanet Host Stars.
    France, K.; et al. (2018); ApJ.

  49. The Spectroscopic Hertzsprung–Russell Diagram of Hot Massive Stars in the Small Magellanic Cloud.
    Castro, N.; et al. (2018); ApJ.

  50. TESS's first planet. A super-Earth transiting the naked-eye star pi Mensae.
    Gandolfi, D.; et al. (2018); A&A.

  51. The Influence of a Stellar Flare on the Dynamical State of the Atmosphere of the Exoplanet HD 209458b.
    Bisikalo, D.; et al. (2018); Astronomy Reports.

  52. Modeling of Absorption by Heavy Minor Species for the Hot Jupiter HD 209458b.
    Shaikhislamov, I.; et al. (2018); ApJ.

  53. The VLT-FLAMES Tarantula Survey. XXIX. Massive star formation in the local 30 Doradus starburst.
    Schneider, F.; et al. (2018); A&A.

  54. Super-Earth of 8 ME in a 2.2-day orbit around the K5V star K2-216.
    Persson, C.; et al. (2018); A&A.

  55. Generation of a circumstellar gas disc by hot Jupiter WASP-12b.
    Debrecht, A.; et al. (2018); MNRAS.

  56. Effective Induction Heating around Strongly Magnetized Stars.
    Kislyakova, K.; et al. (2018); ApJ.

  57. Exoplanet Studies. Photometric Analysis of the Transmission Spectra of Selected Exoplanets.
    Valyavin, G.; et al. (2018); AstBu.

  58. High-precision multiwavelength eclipse photometry of the ultra-hot gas giant exoplanet WASP-103 b.
    Delrez, L.; et al. (2018); MNRAS.

  59. Discovery of WASP-174b: Doppler tomography of a near-grazing transit.
    Temple, L.; et al. (2018); MNRAS.

  60. Distinguishing the albedo of exoplanets from stellar activity.
    Serrano, L.; et al. (2018); A&A.

  61. A Comparison of Simulated JWST Observations Derived from Equilibrium and Non-equilibrium Chemistry Models of Giant Exoplanets.
    Blumenthal, S.; et al. (2018); ApJ.

  62. K2-139 b: a low-mass warm Jupiter on a 29-d orbit transiting an active K0 V star.
    Barragan, O.; et al. (2018); MNRAS.

  63. First results from the LIFE project: discovery of two magnetic hot evolved stars.
    Martin, A.; et al. (2018); MNRAS.

  64. A new method of measuring centre-of-mass velocities of radially pulsating stars from high-resolution spectroscopy.
    Britavskyi, N.; et al. (2018); MNRAS.

  65. Magnetism, X-rays and accretion rates in WD 1145+017 and other polluted white dwarf systems.
    Farihi, J.; et al. (2018); MNRAS.

  66. An excess of massive stars in the local 30 Doradus starburst.
    Schneider, F.; et al. (2018); Science.

  67. The Colorado Ultraviolet Transit Experiment (CUTE): A dedicated cubesat mission to study exoplanetary mass loss and magnetic fields.
    Fleming, B.; et al. (2018); JATIS.

  68. Detection of magnetic field in the B2 star rho Oph A with ESO FORS2.
    Pillitteri, I.; et al. (2018); A&A.

  69. 2017:
  70. Aerosol Constraints on the Atmosphere of the Hot Saturn-mass Planet WASP-49b.
    Cubillos, P.; et al. (2017); ApJ.

  71. An Algorithm to Compress Line-transition Data for Radiative-transfer Calculations.
    Cubillos, P.; et al. (2017); ApJ.

  72. On Correlated-noise Analyses Applied To Exoplanet Light Curves.
    Cubillos, P.; et al. (2017); AJ.

  73. An overabundance of low-density Neptune-like planets.
    Cubillos, P.; et al. (2017); MNRAS.

  74. Aeronomical constraints to the minimum mass and maximum radius of hot low-mass planets.
    Fossati, L.; et al. (2017); A&A.

  75. The effect of ISM absorption on stellar activity measurements and its relevance for exoplanet studies.
    Fossati, L.; et al. (2017); A&A.

  76. Signs of strong Na and K absorption in the transmission spectrum of WASP-103b.
    Lend, M.; et al. (2017); A&A.

  77. Ground-based photometry of the 21-day Neptune HD 106315c.
    Lendl, M.; et al. (2017); A&A.

  78. Magma oceans and enhanced volcanism on TRAPPIST-1 planets due to induction heating.
    Kislyakova, K.; et al. (2017); Nature Astronomy.

  79. Precise masses for the transiting planetary system HD 106315 with HARPS.
    Barros, S.; et al. (2017); A&A.

  80. WASP-167b/KELT-13b: joint discovery of a hot Jupiter transiting a rapidly rotating F1V star.
    Temple, L.; et al. (2017); MNRAS.

  81. Disproving the validated planets K2-78b, K2-82b, and K2-92b. The importance of independently confirming planetary candidates.
    Cabrera, J.; et al. (2017); A&A.

  82. The EBLM project. III. A Saturn-size low-mass star at the hydrogen-burning limit.
    van Boetticher, A.; et al. (2017); A&A.

  83. The discoveries of WASP-91b, WASP-105b and WASP-107b: Two warm Jupiters and a planet in the transition region between ice giants and gas giants.
    Anderson, D.; et al. (2017); A&A.

  84. Peculiar architectures for the WASP-53 and WASP-81 planet-hosting systems.
    Triaud, A.; et al. (2017); MNRAS.

  85. Secondary Eclipses of HAT-P-13b.
    Hardy, R.; et al. (2017); ApJ.

  86. K2-106, a system containing a metal-rich planet and a planet of lower density.
    Guenther, E.; et al. (2017); A&A.

  87. Discovery of magnetic A supergiants: the descendants of magnetic main-sequence B stars.
    Neiner, C.; et al. (2017); MNRAS.

  88. Effect of stellar wind induced magnetic fields on planetary obstacles of non-magnetized hot Jupiters.
    Erkaev, N.; et al. (2017); MNRAS.

  89. Ly-alpha Absorption at Transits of HD 209458b: A Comparative Study of Various Mechanisms Under Different Conditions.
    Khodachenko, M.; et al. (2017); ApJ.

  90. The Influence of Coronal Mass Ejections on the Mass-loss Rates of Hot-Jupiters.
    Cherenkov, A.; et al. (2017); ApJ.

  91. The Transiting Multi-planet System HD 3167: A 5.7 Me Super-Earth and an 8.3 Me Mini-Neptune.
    Gandolfi, D.; et al. (2017); AJ.

  92. A solar-type star polluted by calcium-rich supernova ejecta inside the supernova remnant RCW 86.
    Gvaramadze, V.; et al. (2017); Nature Astronomy.

  93. A comprehensive study of young B stars in NGC 2264 . I. Space photometry and asteroseismology.
    Zwintz, K.; et al. (2017); A&A.

  94. SALT observations of the chromospheric activity of transiting planet hosts: mass-loss and star-planet interactions.
    Staab, D.; et al. (2017); MNRAS.

  95. A spectroscopic study of the open cluster NGC 6250.
    Martin, A.; et al. (2017); MNRAS.

  96. Asymmetries on red giant branch surfaces from CHARA/MIRC optical interferometry.
    Chiavassa, A.; et al. (2017); A&A.

  97. B fields in OB stars (BOB): Concluding the FORS 2 observing campaign.
    Schoeller, M.; et al. (2017); A&A.

  98. BONNSAI: correlated stellar observables in Bayesian methods.
    Schneider, F.; et al. (2017); A&A.

  99. B field in OB stars (BOB): The outstandingly strong magnetic field in the evolved He-strong star CPD -62° 2124.
    Castro, N.; et al. (2017); A&A.

  100. The Atmosphere and Interior Structure of HAT-P-13b from Spitzer Secondary Eclipses.
    Hardy R. A.; et al. (2017); ApJ.

  101. Rossiter–McLaughlin models and their effect on estimates of stellar rotation, illustrated using six WASP systems.
    Brown, D. J. A.; et al. (2017); MNRAS.

  102. From dense hot Jupiter to low-density Neptune: The discovery of WASP-127b, WASP-136b and WASP-138b.
    Lam, K. W. F.; et al. (2017); A&A.

  103. WASP-South transiting exoplanets: WASP-130b, WASP-131b, WASP-132b, WASP-139b, WASP-140b, WASP-141b & WASP-142b.
    Hellier, C.; et al. (2017); MNRAS.

  104. Search for variables in six Galactic open clusters.
    Paunzen, E.; et al. (2017); NewA.

  105. 2016:
  106. Evidence of magnetic field decay in massive main-sequence stars.
    Fossati, L.; et al. (2016); A&A.

  107. FORS2 observes a multi-epoch transmission spectrum of the hot Saturn-mass exoplanet WASP-49b.
    Lendl, M.; et al. (2016); A&A.

  108. WASP-86b and WASP-102b: super-dense versus bloated planets.
    Faedi, F.; et al. (2016); in press.

  109. WASP-157b, a Transiting Hot Jupiter Observed with K2.
    Mocnik, T.; et al. (2016); PASP.

  110. WASP-92b, WASP-93b and WASP-118b: three new transiting close-in giant planets.
    Hay, K. L.; et al. (2016); MNRAS.

  111. WASP-113b and WASP-114b, two inflated hot Jupiters with contrasting densities.
    Barros, S. C. C.; et al. (2016); A&A.

  112. WASP-120 b, WASP-122 b, AND WASP-123 b: Three Newly Discovered Planets from the WASP-South Survey.
    Turner, O. D.; et al. (2016); PASP.

  113. WASP-121 b: a hot Jupiter close to tidal disruption transiting an active F star.
    Delrez, L.; et al. (2016); MNRAS.

  114. Five transiting hot Jupiters discovered using WASP-South, Euler, and TRAPPIST: WASP-119 b, WASP-124 b, WASP-126 b, WASP-129 b, and WASP-133 b.
    Maxted, P. F. L.; et al. (2016); A&A.

  115. Physical properties of the planetary systems WASP-45 and WASP-46 from simultaneous multiband photometry.
    Ciceri, S.; et al. (2016); MNRAS.

  116. Three irradiated and bloated hot Jupiters:. WASP-76b, WASP-82b, and WASP-90b.
    West, R. G.; et al. (2016); A&A.

  117. Metallicity dependence of turbulent pressure and macroturbulence in stellar envelopes.
    Grassitelli, L.; et al. (2016); A&A.

  118. B fields in OB stars (BOB): Concluding the FORS2 observing campaign.
    Schoeller, M.; et al. (2016); A&A.

  119. BONNSAI: correlated stellar observables in Bayesian methods.
    Schneider, F. R. N.; et al. (2016); A&A.

  120. Transiting Exoplanet Studies and Community Targets for JWST's Early Release Science Program.
    Stevenson, Kevin B. et al. (2016); PASP.

  121. Diagnostics of the unstable envelopes of Wolf-Rayet stars.
    Grassitelli, L. et al. (2016); A&A.

  122. Near-uniform internal rotation of the main-sequence γ Doradus pulsator KIC 7661054.
    Murphy, Simon J. et al. (2016); MNRAS.

  123. Identifying the "true" radius of the hot sub-Neptune CoRoT-24b by mass loss modelling.
    Lammer, H. et al. (2016); MNRAS.

  124. On the ultraviolet anomalies of the WASP-12 and HD 189733 systems: Trojan satellites as a plasma source.
    Kislyakova, K. G. et al. (2016); MNRAS.

  125. Scientific problems addressed by the Spektr-UV space project (world space Observatory—Ultraviolet).
    Boyarchuk, A. et al. (2016); Astronomy Reports.

  126. Rejuvenation of stellar mergers and the origin of magnetic fields in massive stars.
    Schneider, F. et al. (2016); MNRAS.

  127. Confronting uncertainties in stellar physics II. exploring differences in main-sequence stellar evolution tracks.
    Stancliffe, R. J. et al. (2016); A&A.

  128. B fields in OB stars (BOB): Detection of a magnetic field in the He-strong star CPD-57° 3509.
    Przybilla, N.; et al. (2016); A&A.

  129. Accuracy of atmospheric parameters of FGK dwarfs determined by spectrum fitting.
    Ryabchikova, T.; et al. (2016); MNRAS.

  130. Chemical composition of intermediate mass stars members of the M6 (NGC 6405) open cluster.
    Kiliçoglu et al. (2016); AJ.

  131. 2015:
  132. Far-UV Spectroscopy of the Planet-hosting Star WASP-13: High-energy Irradiance, Distance, Age, Planetary Mass-loss Rate, and Circumstellar Environment.
    Fossati, L. et al. (2015); ApJ.

  133. A Bimodal Correlation between Host Star Chromospheric Emission and the Surface Gravity of Hot Jupiters.
    Fossati, L.; et al. (2015); ApJ.

  134. B fields in OB stars (BOB): Low-resolution FORS2 spectropolarimetry of the first sample of 50 massive stars.
    Fossati, L.; et al. (2015); A&A.

  135. Relating turbulent pressure and macroturbulence across the HR diagram with a possible link to γ Doradus stars.
    Grassitelli, L. et al. (2015); A&A.

  136. Blue supergiants as descendants of magnetic main sequence stars.
    Petermann, I. et al. (2015); A&A.

  137. The FORS1 catalogue of stellar magnetic field measurements.
    Bagnulo, S. et al. (2015); A&A.

  138. A seismic and gravitationally bound double star observed by Kepler. Implication for the presence of a convective core.
    Appourchaux, T.; et al. (2015); A&A.

  139. Cold gas in hot star clusters: the wind from the red supergiant W26 in Westerlund 1.
    Mackey, J. et al. (2015); A&A.

Space Research Institute, Austrian Academy of Sciences. Schmiedlstrasse 6, 8042 Graz, Austria.
This site is © Copyright Patricio Cubillos 2015-2016, All Rights Reserved.
Free web templates